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A Highly Stereoselective Synthesis of the
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Landomycin A is a member of the angucycline antibiotic fam-
ily that exhibits a range of biological activitié§.Landomycin A
in particular has been studied as a potential antitumor dgént.
Although the mode of action of landomycin A has not been estab-
lished unequivocally, it is known that the natural product interacts
with DNA,% and inhibits DNA synthesis and & cell cycle
progressiofi.It is also known that the cytostatic activities of other
members of the landomycin family (e.g., landomycins-B)
depend on the length of the oligosaccharide chain.
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The landomycin A hexasaccharide is a structurally complex
deoxyoligosaccharidecontaining four 2,6-dideoxy-glycosidic
linkages and two 2,3,6-trideoxy-glycosidic linkages. This hexa-
saccharide exists as a head-to-tail dimer of a repeating-AC
trisaccharide subunit. In view of the role played in DNA binding
by the oligosaccharide units of several families of natural products,
including the aureolic acids and the calicheamiéiidwe became
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interested in developing a synthesis of landomycin A to probe
the structure-function relationships of the structurally novel hexa-
saccharide. Sulikowski has reported a pioneering synthesis of the
landomycin A hexasaccharide by a route featuring his glycosyl
tetrazole and glycosyl phosphite glycosidation methodoldgy.
More recently, Kirschning outlined a synthesis of the landomycin
A—B—C repeat trisaccharide that features use of a 2-deoxy-2-
iodo-glucosyl acetate donor for construction of the B\glyco-
sidic linkage!>*We report herein a highly stereoselective synthe-
sis of hexasaccharide glycalusing our recently introduced 2-
deoxy-2-iodo-glucopyranosy! trichloroacetimidate glycosidation
technology:"'8 Each of the three 2-deoxy-glycosidic linkages
in 1 was established witk 95% selectivity using this technology.
This is the most highly stereoselective synthesis of a structurally
complex deoxyoligosaccharide containing 2,6-dide@xgtyco-
sidic linkages reported to date.

In planning the synthesis df, we focused on the coupling of
two advanced trisaccharide intermediates (ultimat8lgnd 9)
that could be derived from a common precursor suchB. asn-
ticipating that our Mitsunobu glycosidation protocol will be useful
for connecting the hexasaccharide to the phenolic aglytom,
targetedl2 as a key intermediate. On the basis of our previous
studies of the stereochemistry of PhSeCl additions to glycals (a
step required to activatE2 for Mitsunobu coupling with the ag-
lycon) 2% it was necessary to retain C(6)-heteroatom substituents
on the A residue ofl2, and hence also the repeat trisaccharide
precursor2. In turn, intermediate2 would be assembled from
the conformationally inverted 2-iodo-1,6-anhydroglucose deriva-
tive 3'8 (precursor to the A and 'Aesidues), 2-iodoglycosy! tri-
chloroacetimidatet'® (precursor to the B and’Besidues), and
theL-rhodinosyl acetat&?! (precursor to the C and’ @Cesidues).
Intermediate8 and4 also derive from a common precursor, and
the C(6)-acetoxy substituents dfare an artifact of this lineage.
Concerns about the acid lability of the- and B—C' a-glyco-
sidic linkages involving the-rhodinose residue dictated that we
use our 2-deoxy-2-iodo-glycosyl trichloroacetimidate glycosida-
tion protocol for the late stage coupling & and 9.22 Fur-
thermore, we considered it prudent to defer the deoxygenation
of the C(6) positions o (and hence also & and9) until after
the hexasaccharide was fully assembled, since past experience
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indicated that 6-deoxy-glycosyl trichloroacetimidates are extreme-
ly reactive and difficult to prepare without decompositi8he
C(6)-heteroatom substituents dfthus play a key strategic role

in this synthesis by functioning as glycosyl donor stabilizing
elementg?*
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The repeat trisaccharid® was synthesized starting with the
B-glycosidation of the readily available alcot®f with the gly-
cosyl imidate4.18 This reaction, performed with 0.05 equiv of
TBS-OTF® as the activating agent in GBI, at —78 °C, provided
disaccharid® in 91—95% yield with>19:1 selectivity. Acetolysis
of the 1,6-anhydro linkage was accomplished by treatme#t of
with trifluoroacetic acid and acetic anhydride at ambient temper-
ature. Deprotecticfi of the TBS ether using BMl-(HF); in CH5C-
N provided disaccharidé as a ca. 3:1 mixture of anomeric ace-
tates favoring th@-isomer shown (91% over two steps). Finally,
coupling of disaccharid@ with theL-rhodinosyl acetatg’! using
TBS-OTf (0.05 equiv) in CKHCI, at —78 °C provided2 in 91%
yield, again as a ca. 3:1 mixture of anomeric acetates favoring

27

Trisaccharide2 was easily converted into the targeted trichlo-
roacetimidate derivativd in 70% yield by selective cleavage of
the anomeric acetate using aqueous hydrazine in M&Gird
then treatment of a THF solution of the lactols with excess NaH

in CI;CCN at 0°C 23
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DMPM ether9?® was synthesized by treatment of trisaccharide
trichloroacetimidat® and 1.0 equiv of 3,4-dimethoxybenzyl alco-
hol (DMPM-OH) in CH,CI, with 0.1 equiv of TBS-OTf as the
activating agent (7580%), followed by removal of the TBS ether
using HOAc-buffered TBAF. This sequence affordgih 62—
66% overall yield, with ca. 25:1 selectivity for tifleanomer. TBS-
OTf promoted coupling o® with trichloroacetimidate3 (1.3
equiv) then provided hexasaccharitiéin 73—80% yield, again
with -selectivity of>25:1. The four primary acetates were cleav-
ed uneventfully upon treatment of hexasacchatidwith a large
excess of DIBAL-H in THF. The four primary alcohols were then
simultaneously converted to tosylates, which were displaced with-
out complication by treatment with Lil in THF heated to reflux
in the presence of NaHCG{giving 11in 65% overall yield. Next,
the anomeric DMPM ether was cleaved by treatmeritIofvith
DDQ in CH,CI, containing pH 7 phosphate bufférThis pro-
vided the hexasaccharide lactols in 56% yield, along with 21%
of the corresponding reducing pentasaccharide in which the ter-
minal (C residue) rhodinose unit had been cleaved. Treatment
of the hexasaccharide lactols with methanesulfonyl chloride (Ms-
Cl) and EgN resulted in spontaneous reductive elimination of
the 2-iodo substituent from the A residue (87% yield), and pro-
vided the hexasaccharide glydalin 49% yield for the two steps.
Reductive removal of the seven iodide substituents was accom-
plished in 88% vyield by treatment a2 with BusSnH in toluene
at ambient temperature, usingzBt(and a trace amount of air)
as the radical initiatot: Exposure of the resulting tetrabenzoate
to K,CO; in a boiling mixture of THF and MeOH (78% yield)
and removal of the TBS ether by treatment with HOAc-buffered
TBAF in boiling THF (89% yield) completed the synthesis of
hexasaccharide glycal

In summary, we have developed a highly stereoselective
synthesis of hexasaccharide glytallhe exceptional stereocontrol
(>95:5) achieved at each of the five glycosidic linkages is note-
worthy, especially the control exercised over the three 2-deoxy-
B-glycosidic linkages? Also of interest is the reduction of a 2-
iodopyranose with MsCl and g (cf., 11to 12). Further progress
toward the completion of a total synthesis of landomycin A will
be reported in due course.

Acknowledgment. We thank the National Institutes of Health (GM
38907) for financial support.

Supporting Information Available: Experimental details for the
synthesis oflL (PDF). This material is available free of charge via the
Internet at http://pubs.acs.org.

JA000743K
(23) Roush, W. R.; Sebesta, D. P.; James, RTétrahedron1997, 53,

(24) Overend, W. G.; Rees, C. W.; Sequeira, JJ.SChem. Soc1962
342

(25) Roush, W. R.; Narayan, ®rg. Lett.1999 1, 899.

(26) Nelson, T. D.; Crouch, R. Dsynthesi€1996 1031.

(27) We were unable to detect any diastereomeric glycosides from the
coupling of 7 and 9.

(28) Excoffier, G.; Gagnaire, D.; Utille, J.-Rarbohydr. Res1975 39,

368

(29) We also pursued an approach that generated an equivalEdith
an A residue glycal (e.g., via glycosidation of an-B—C glycal generated
from 2 with trichloroacetimidateS). Unfortunately, we were not able to
deoxygenate the C(6)OAc substituents of the hexasaccharide glycal prepared
in this way.

(30) Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O.
Tetrahedron1986 42, 3021.

(31) Miura, K.; Ichinose, Y.; Nozaki, K.; Fugami, K.; Oshima, K.; Utimoto,

K. Bull. Chem. Soc. Jpril989 62, 143.

(32) A referee requested that we provide a statistical comparison of
Sulikowski’s and our syntheses of the landomycin A hexasaccharide fragments.
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synthesized by the two groups. Nevertheless, our synthedigpadceeds in
a total of 35 steps and 0.6% overall yield, including 8 steps for the synthesis
of rhodinose derivativé from methyl §)-lactate (unpublished). The longest
linear sequence is 25 steps starting from commercially available triacetyl
p-glucal (precursor t®B and 4), with an overall yield of 1.5% and87%
stereoselectivity for this sequence. Sulikowski’s synthesis involves 33 steps
starting fromc-rhamnal (precursor of the-rhodinose units) and-rhamnal
(precursor of the A, B, A and B residues), in an overall yield 0£0.01%
and 27% stereoselectivity. The longest linear sequence in this work is 18 steps
(0.4% yield) starting from.-rhamnal (which is not commercially available).



